已知是等差数列,其n项和为
,
,
(Ⅰ)求及
;
(Ⅱ)令,求数列
的前n项和
(本小题满分10分)【选修4—1:几何证明选讲】
如图,在正中,点
分别在边
上,且
,
,
相交于点
(1)求证:四点共圆;
(2)若正的边长为2,求,
所在圆的半径.
(本小题满分12分)已知函数(
为无理数,
)
(1)求函数在点
处的切线方程;
(2)设实数,求函数
在
上的最小值;
(3)若为正整数,且
对任意
恒成立,求
的最大值.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=
.
(1)求异面直线AC与A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的正弦值;
(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.
(本小题满分12分)
已知数列中,
,前项和
.
(1)求数列的通项公式;
(2)设数列的前项和为
,是否存在实数
,使得
对一切正整数都成立?若存在,求出
的最小值;若不存在,请说明理由.
(本小题满分12分)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC.
(1)求证:平面MOE∥平面PAC;
(2)求证:平面PAC⊥平面PCB;
(3)设二面角M-BP-C的大小为θ,求的值.