(本小题满分15分)
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数
)的图象,且点M到边OA距离为
.
(1)当时,求直路
所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
(本小题满分12分)
设函数
(1)设,讨论函数
的
单调性;
(2)若对任意成立,求实数
的取值范围。
(本小题满分12分)
已知椭圆的离心率为
,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线
的距离为
,求
面积的最大值。
(本小题满分12分)
设的前n项和,对
,都有
(1)求数列的通项公式;
(2)设的前n项和,求证:
(本小题满分12分)
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,E是CD的中点,PA
底面ABCD,PA=4
(1)证明:若F是棱PB的中点,求证:EF//平面PAD;
(2)求平面PAD和平面PBE所成二面角(锐角)的大小。
(本小题满分12分)
小明参加一次比赛,比赛共设三关。第一、二关各有两个问题,两个问题全答对,可进入下一关。第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得价值分别为100、300、500元的奖励。小明对三关中每个问题回答正确的概率依次为、
、
,且每个问题回答正确
与否相互独立。
(1)求小明过第一关但未过第二关的概率;
(2)用表示小明所获得奖品的价值,求
的分布列和期望。