(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若
,则该零件为优等品;若
,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
甲机床零件频数 |
2 |
3 |
20 |
20 |
4 |
1 |
乙机床零件频数 |
3 |
5 |
17 |
13 |
8 |
4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求角A的最大值.
已知函数,函数
.
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列
的前n项和为
,求证:当
时,
.
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设
.
(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.
已知等差数列满足:
,该数列的前三项分别加上l,l,3后顺次成为等比数列
的前三项.
(I)求数列,
的通项公式;
(II)设,若
恒成立,求c的最小值.
在四棱锥P-ABCD中,侧面PCD底面ABCD,PD
CD,底面ABCD是直角梯形,AB∥DC,
ADC-900,AB=AD=PD=1.CD=2.
(I)求证:BC平面PBD:
(II)设E为侧棱PC上异于端点的一点,,试确定
的值,使得二面角
E-BD-P的大小为.