(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率
,过M的右焦点F作不与坐标轴垂直的直线
,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
在△ABC中,cos B=-,cos C=.
(1)求sin A的值;
(2)设△ABC的面积S△ABC=,求BC的长
如右图所示,在△ABC中,AC=2,BC=1,
cos C=.
(1)求AB的值;
(2)求sin的值.
已知函数f(x)=sin(ωx+φ)-cos(ωx+φ),(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.
(1)求f的值;
(2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的解析式及其单调递减区间
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)(x∈R)的最大值是1,其图象经过点M.
(1)求f(x)的解析式;
(2)已知α、β∈,且f(α)=,f(β)=,
求f(α-β)的值.
已知数列{an}满足,a1=1,a2=2,an+2=,n∈N.
(1)令bn=an+1-an,证明:{bn}是等比数列:
(2)求{an}的通项公式.