第届亚运会于
年
月
日至
日在中国广州进行,为了做好接待工作,组委会招募了
名男志愿者和
名女志愿者,调查发现,男、女志愿者中分别有
人和
人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:
|
喜爱运动 |
不喜爱运动 |
总计 |
男 |
10 |
|
16 |
女 |
6 |
|
14 |
总计 |
|
|
30 |
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取
名负责翻译工作,则抽出的志愿者中
人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
(本小题满分12分)已知函数.
(1)确定函数f(x)的单调增区间;
(2)将函数y=f(x)的图象向左平移个单位长度,所得图象关于y轴对称,求φ的值。
. 根据如图所示的程序框图,将输出的x、y值依次分别
记为y1,y2,…,yn,…,y2007
(1)求数列的通项公式
;
(2)写出y1,y2,y3,y4,由此猜想出数列{yn}的一个
通项公式yn,并证明你的结论;
(3)求
如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②)
(1)求证AP∥平面EFG;
(2)求直线AP与平面EFG之间的距离;
(3)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明.
已知四棱锥的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(1)证明:面面
;
(2)求与
所成的角的余弦值;
(3)求面与面
所成二面角的正切值。
由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高。然而也有部分公众对该活动的实际效果与负面影响提出了疑问。对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
![]() |
支持 |
保留 |
不支持 |
20岁以下 |
800 |
450 |
200 |
20岁以上(含20岁) |
100 |
150 |
300 |
⑴在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45个人,求n的值;
⑵在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中
任意选取2人,求至少1人20岁以下的概率;
⑶在接受调查的人中,有8人给这项活动打出了分数如下:9.4, 8.6, 9.2, 9.6, 8.7
9.3, 9.0, 8.2.把这8人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率。