在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 (α为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:
(1)两人各投一次,只有一人命中的概率;
(2)每人投篮两次,甲投中1球且乙投中2球的概率.
求二项式(-
)15的展开式中:
(1)常数项;
(2)有几个有理项;
现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?
(2)若从中选5人,且要求女生只有2名, 站成一排,共有多少种不同的排法?
已知圆 关于直线
:
对称的圆为
.
求圆的方程
在圆和圆
上各取点
求线段
长的最小值.
如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?