某中学共2200名学生中有男生1200名,按男女性别用分层抽样抽出110名学生,询问是否爱好某项运动。已知男生中有40名爱好该项运动,女生中有30名不爱好该项运动。
(1)如下的列联表:
|
男 |
女 |
总计 |
爱好 |
40 |
|
|
不爱好 |
|
30 |
|
总计 |
|
|
|
(2)通过计算说明,是否有99%以上的把握认为“爱好该项运动与性别有关”? 参考信息如下:
![]() |
0.050 |
0.010 |
0.001 |
k |
3.841 |
6.635 |
10.828 |
一个口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(Ⅰ)求甲赢且编号的和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试用概率说明理由.
如图,已知均在⊙O上,且
为⊙O的直径。
(1)求的值;
(2)若⊙O的半径为,
与
交于点
,且
、
为弧
的三等分点,求
的长.
已知函数,
(Ⅰ)若,求函数
的极值;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若在区间(
)上存在一点
,使得
成立,求
的取值范围.
已知椭圆的焦点在
轴上,离心率
,且经过点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线
与椭圆
相交于
两点,求证:直线
与
的倾斜角互补.
四棱锥中,底面
为平行四边形,侧面
底面
,
为
的中点,已知
,
(Ⅰ)求证:;
(Ⅱ)在上求一点
,使
平面
;
(Ⅲ)求三棱锥的体积.