游客
题文

已知: ,……
(1)按照上面算式,你能猜出=                  ;
(2)利用上面的规律计算: 的值.

科目 数学   题型 解答题   难度 较易
知识点: 有理数无理数的概念与运算
登录免费查看答案和解析
相关试题

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:   

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:   

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

如图,二次函数 y = - x 2 + bx + 3 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 D OC 的中点,点 P 在抛物线上.

(1) b =    

(2)若点 P 在第一象限,过点 P PH x 轴,垂足为 H PH C BD 分别交于点 M N .是否存在这样的点 P ,使得 PM = MN = NH ?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)若点 P 的横坐标小于3,过点 P PQ BD ,垂足为 Q ,直线 PQ x 轴交于点 R ,且 S ΔPQB = 2 S ΔQRB ,求点 P 的坐标.

(阅读)

数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.

(理解)

(1)如图1,两个直角边长分别为 a b 、斜边长为 c 的直角三角形和一个两条直角边都是 c 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;

(2)如图2, n n 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: n 2 =    

(运用)

(3) n 边形有 n 个顶点,在它的内部再画 m 个点,以 ( m + n ) 个点为顶点,把 n 边形剪成若干个三角形,设最多可以剪得 y 个这样的三角形.当 n = 3 m = 3 时,如图3,最多可以剪得7个这样的三角形,所以 y = 7

①当 n = 4 m = 2 时,如图4, y =    ;当 n = 5 m =    时, y = 9

②对于一般的情形,在 n 边形内画 m 个点,通过归纳猜想,可得 y =   (用含 m n 的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.

将图中的 A 型(正方形)、 B 型(菱形)、 C 型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.

(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是   

(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)

在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.

(1)本次调查的样本容量是   ,这组数据的众数为   元;

(2)求这组数据的平均数;

(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号