已知二次函数和“伪二次函数”
.
(Ⅰ)证明:只要,无论
取何值,函数
在定义域内不可能总为增函数;
(Ⅱ)在同一函数图像上任意取不同两点A(),B(
),线段AB中点为C(
),记直线AB的斜率为k.
(1)对于二次函数,求证
;
(2)对于“伪二次函数” ,是否有(1)同样的性质?证明你的结论。
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点。
(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小;
统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在元之间。
(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在的应抽取多少人;
(2)根据频率分布直方图估计样本数据的中位数;
(3)根据频率分布直方图估计样本数据的平均数.
某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,用茎叶图分别记录抽查数据如下:
(1)分别求出甲、乙两组数据的中位数
(2)估计哪个车间的产品平均重量较高,哪个车间比较稳定?
已知锐角三角形ABC中,
(Ⅰ)求证:;
(Ⅱ)设AB=3,求AB边上的高
在海岸A处,发现北偏东方向,距离A为
海里的B处有一走私船,在A北偏西
方向距离A为2海里的C处有我方一艘缉私艇奉命以
海里/小时的速度追截走私船,且C在B的正西方,此时走私船正以
海里/小时的速度从B处向北偏东
方向逃窜,问缉私艇沿什么方向,才能最快追上走私船?需要多长时间?