已知椭圆的中心在坐标原点,焦点在
轴上,其左、右焦点分别为
、
,短轴长为
,点
在椭圆
上,且满足
的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使
恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.
已知函数,
.
(Ⅰ)若函数,求函数
的单调区间;
(Ⅱ)设直线为函数
的图象上一点
处的切线.证明:在区间
上存在唯一的
,使得直线
与曲线
相切.
等差数列中,
,前
项和为
,等比数列
各项均为正数,
,且
,
的公比
(1)求与
;
(2)证明:
如图,在四棱锥中,底面
为菱形,
,
为
的中点。
(1)若,求证:平面
平面
;
(2)点在线段
上,
,试确定
的值,使
平面
;
(3)在(2)的条件下,若平面
平面ABCD,且
,求二面角
的大小。
已知集合,集合
,集合
(1)求从集合中任取一个元素是(3,5)的概率;
(2)从集合中任取一个元素,求
的概率;
(3)设为随机变量,
,写出
的分布列,并求
。
在中,
分别是角
的对边,若
,
。
(1)求角的大小;
(2)若求
面积