空气质量指数(单位:
)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量级别 |
一级 |
二级 |
三级 |
四级 |
五级 |
六级 |
空气质量类别 |
优 |
良 |
轻度污染 |
中度污染 |
重度污染 |
严重污染 |
某市年
月
日—
月
日(
天)对空气质量指数
进行监测,获得数据后得到如下条形图.
(1)估计该城市一个月内空气质量类别为优的概率;
(2)从空气质量级别为三级和四级的数据中任取个,求恰好有一天空气质量类别为中度污染的概率.
设锐角三角形ABC的内角A,B,C的对边分别为,且
.
(1)求角的大小;
(2)若,求
的面积及
.
已知函数
(1)当时,求函数
的单调递增区间;
(2)记函数的图象为曲线
,设点
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”,试问:函数
是否存在“中值相依切线”,请说明理由.
已知双曲线的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点,求证:以
为直径的圆经过点
.
如图,四棱锥中,
,底面
为梯形,
,
,且
,
.
(1)求证:;
(2)求二面角的余弦值.