某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
设函数.
(1)求的单调区间和极值;
(2)若关于的方程
有3个不同实根,求实数a的取值范围.
如图,正方形所在的平面与平面
垂直,
是
和
的交点,
,且
.
(1)求证:平面
;
(2)求二面角的大小.
已知数列满足
(1)分别求的值。
(2)猜想的通项公式
,并用数学归纳法证明。
已知动圆与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点.
(1)求曲线的方程;
(2)试探究和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为
,求
的最大值.