某算法的程序框图如图所示,其中输入的变量 在1,2,3,…,24这24个整数中等可能随机产生.
(Ⅰ)分别求出按程序框图正确编程运行时输出
的值为
的概率
(
=1,2,3);
(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行
次后,统计记录了输出
的值为
(
=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
运行 次数 |
输出
的值 为1的频数 |
输出
的值 为2的频数 |
输出
的值 为3的频数 |
30 |
14 |
6 |
10 |
… |
… |
… |
… |
2100 |
1027 |
376 |
697 |
乙的频数统计表(部分)
运行 次数 |
输出
的值 为1的频数 |
输出
的值 为2的频数 |
输出
的值 为3的频数 |
30 |
12 |
11 |
7 |
… |
… |
… |
… |
2100 |
1051 |
696 |
353 |
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出 的值为 ( =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.
(Ⅰ)已知复数z=1﹣i(i是虚数单位),若z2+a+b=3﹣3i,求实数a,b的值.
(Ⅱ)求二项式(+
)10展开式中的常数项.
已知椭圆:
的离心率为
,一条准线
.
(1)求椭圆的方程;
(2)设为坐标原点,
是
上的点,
为椭圆
的右焦点,过点
作
的垂线与以
为直径的圆
交于
两点.
①若=
,求圆
的方程;
②若是
上的动点,求证:点
在定圆上,并求该定圆的方程.
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤
≤200时,车流速度
是车流密度
的一次函数.
(Ⅰ)当0≤≤200时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时
可以达到最大,并求出最大值.(精确到1辆/小时).
设,其中
为常数.
(1)求曲线(x)在点(4,2)处的切线方程;
(2)如果函数(x)的图象也经过点(4,2),求
(x)与(1)中的切线的交点.
已知,不等式
的解集
(Ⅰ)求的值;
(Ⅱ)若恒成立,求
的取值范围.