如图,在各棱长均为的三棱柱
中,侧面
底面
,
.
(1)求侧棱与平面
所成角的正弦值的大小;
(2)已知点满足
,在直线
上是否存在点
,使
?若存在,请确定点
的位置;若不存在,请说明理由.
(本小题满分12分) 如图,边长为2的正方形中,点
是
的中点,点
是
的中点,将△
、△
分别沿
、
折起,使
、
两点重合于点
,连接
,
.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值.
(本小题满分12分) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为
,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数的分布列与期望
设函数。
(1)当时,求函数
的定义域;
(2)若函数的定义域为
,试求
的取值范围。
已知曲线的极坐标方程为
,以极点为原点,极轴为
轴的正半轴建立平
面直角坐标系,设直线的参数方程为
(
为参数)。
(1)求曲线的直角坐标方程与直线
的普通方程;
(2)设曲线与直线
相交于
两点,以
为一条边作曲线
的内接矩形,求该矩形的面积。
如图,已知和
相交于
两点,
为
的直径,直线
交
于点
,点
为
的中点,连接
分别交
,
于点
,连接
。
(1)求证:;
(2)求证:。