已知椭圆:
的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,
线段垂直平分线交
于点
,求点
的轨迹
的方程;
(Ⅲ)设与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
如图,为60°的二面角,等腰直角三角形MPN的直角顶点P在l上,M∈α,N∈β,且MP与β所成的角等于NP与α所成的角.
(1)求证: MN分别与α、β所成角相等;
(2)求MN与β所成角.
已知斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直.
(1)求证: AB1⊥C1D1;
(2)求证: AB1⊥面A1CD;
(3)若AB1=3,求直线AC与平面A1CD所成的角.
在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.
(1)若D是BC的中点,求证:AD⊥CC1;
(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;
(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由.
两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证: MN∥平面BCE。
若椭圆=1(a>b>0)与直线l: x+y=1在第一象限内有两个不同的交点,求a、b所满足的条件,并画出点P(a,b)的存在区域.