游客
题文

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC. 

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(文科)已知抛物线为直线上任意一点,过点作抛物线的两条切线,切点分别为,
(Ⅰ)当的坐标为时,求过三点的圆的方程;(Ⅱ)证明:以为直径的圆恒过点

(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点
(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

(文科)已知椭圆的离心率是,其左、右顶点分别为为短轴的端点,△的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆的右焦点,若点是椭圆上异于的任意一点,直线与直线分别交于两点,证明:以为直径的圆与直线相切于点

(理科)在平面直角坐标系中,设点,以线段为直径的圆经过原点
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.

(文科)已知椭圆的上顶点为,两个焦点为为正三角形且周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆:,若直线与椭圆只有一个公共点,且直线与圆相切于点;求的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号