在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且
.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:
+
=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为
,求证:直线MN过定点.
(本小题满分13分)已知函数上恒成立.
(1)求的值;
(2)若
(3)是否存在实数m,使函数上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.
(本小题满分13分)设三次函数,在
处取得极值,其图像在
处的切线的斜率为
。
(1)求证:;
(2)若函数在区间
上单调递增,求
的取值范围。
本小题满分13分)
已知函数
(1)为定义域上的单调函数,求实数
的取值范围
(2)当时,求函数
的最大值
(3)当时,且
,证明:
(本小题满分14分,第Ⅰ小题5分,第Ⅱ小题4分,第Ⅲ小题5分).
数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前
项和为
,且
,求证:对任意实数
(
是常数,
=2.71828
)和任意正整数
,总有
2;
(Ⅲ) 正数数列中,
.求数列
中的最大项.
(本小题满分14分)
已知数列,
,
(Ⅰ)求数列的通项公式
(Ⅱ)当时,求证:
(Ⅲ)若函数满足:
求证: