对于任意的(
不超过数列的项数),若数列的前
项和等于该数列的前
项之积,则称该数列为
型数列。
(1)若数列是首项
的
型数列,求
的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列是
型数列,且
试求
与
的递推关系,并证明
对
恒成立。
如图,四棱锥中,
面
,
、
分别为
、
的中点,
.
(1)证明:∥面
;
(2)证明:
在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(1)求该考场考生中“阅读与表达”科目中成绩为的人数;
(2)若等级分别对应
分,
分,
分,
分,
分,求该考场考生“数学与逻辑”科目的平均分;
(3)已知参加本考场测试的考生中,恰有两人的两科成绩均为. 在至少一科成绩为
的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为
的概率.
已知向量,设函数
,若函数
的图象与
的图象关于坐标原点对称.
(1)求函数在区间
上的最大值,并求出此时
的取值;
(2)在中,
分别是角
的对边,若
,
,
,求边
的长.
设,
分别是椭圆
:
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
,
两点,
到直线
的距离为
,连接椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆的方程;
(2)已知点,设
是椭圆
上的一点,过
、
两点的直线
交
轴于点
,若
, 求
的取值范围;
(3)作直线与椭圆
交于不同的两点
,
,其中
点的坐标为
,若点
是线段
垂直平分线上一点,且满足
,求实数
的值.
已知函数.
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.