已知椭圆的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆的方程;
(2)如图,、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
,设
的斜率为
,
的斜率为
,求证:
为定值.
已知x,y为正实数,满足1≤lg(xy)≤2,3≤lg≤4,求lg(x4y2)的取值范围.
已知双曲线的中心为原点
,左、右焦点分别为
、
,离心率为
,点
是直线
上任意一点,点
在双曲线
上,且满足
.
(1)求实数的值;
(2)证明:直线与直线
的斜率之积是定值;
(3)若点的纵坐标为
,过点
作动直线
与双曲线右支交于不同的两点
、
,在线段
上去异于点
、
的点
,满足
,证明点
恒在一条定直线上.
已知函数.
(1)求函数的极值;
(2)定义:若函数在区间
上的取值范围为
,则称区间
为函数
的“域同区间”.试问函数
在
上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
已知等差数列的首项为
,公差为
,数列
满足
,
.
(1)求数列与
的通项公式;
(2)记,求数列
的前
项和
.
(注:表示
与
的最大值.)
如图,在棱长为的正方体
中,点
是棱
的中点,点
在棱
上,且满足
.
(1)求证:;
(2)在棱上确定一点
,使
、
、
、
四点共面,并求此时
的长;
(3)求几何体的体积.