已知公差不为零的等差数列的前
项和
,且
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,求
的前
项和
.
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
如图,在三棱锥中,点
分别是棱
的中点.
(1)求证://平面
;
(2)若平面平面
,
,求证:
.
已知向量,
.
(1)若,求
的值;
(2)若,
,求
的值.
已知点,
,动点
满足
.
(1)求动点的轨迹
的方程;
(2)在直线:
上取一点
,过点
作轨迹
的两条切线,切点分别为
.问:是否存在点
,使得直线
//
?若存在,求出点
的坐标;若不存在,请说明理由.
某品牌汽车4店经销
三种排量的汽车,其中
三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.
(1)求该单位购买的3辆汽车均为种排量汽车的概率;
(2)记该单位购买的3辆汽车的排量种数为,求
的分布列及数学期望.