函数.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)将的图像向左平移
个单位,再将得到的图像横坐标变为原来的2倍(纵坐标不变)后得到
的图像,若
的图像与直线
交点的横坐标由小到大依次是
求数列
的前2n项的和。
某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,
(1)请列出X的分布列;
(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.
某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,
(1)求取出的3件产品中恰好有一件次品的概率;
(2)求取出的3件产品中次品的件数X的概率分布列与期望.
如图,曲线Γ:x2+y2=1(x≥0,y≥0)与x轴交于点A,点P在曲线Γ上,∠AOP=α.
(Ⅰ)若点P的坐标是(,
),求cos2
﹣sin2
+2sin
cos
的值;
(Ⅱ)求函数f(α)=sinα+cosα的值域.
袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为,求P的值.
某热水瓶胆生产的6件产品中,有4件正品,2件次品,正品和次品在外观上没有区别,从这6件产品中任意抽检2件,计算
(1)2件都是正品的概率
(2)至少有一件次品的概率.