如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆。
(1)若最大拱高h为6 m,则隧道设计的拱宽
是多少?
(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽
?(已知:椭圆
+
=1的面积公式为S=
,柱体体积为底面积乘以高。)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的
倍,试确定M、N的位置以及
的值,使总造价最少。
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
的长; (2)求cos<
>的值;(3)求证:A1B⊥C1M.
(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是
,并经过点
,求此双曲线的标准方程.
(本小题满分12分)设直线
与直线
交于
点.
(1)当直线
过
点,且与直线
垂直时,求直线
的方程;
(2)当直线
过
点,且坐标原点
到直线
的距离为
时,求直线
的方程.
(本小题满分14分)已知函数
处取得极值2。
(Ⅰ)
求函数
的表达式;
(Ⅱ)当
满足什么条件时,函数
在区间
上单调递增?
(Ⅲ)若
为
图象上任意一点,直线与
的图象切于点P,求直线的斜率
的取值范围