如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆。
(1)若最大拱高h为6 m,则隧道设计的拱宽是多少?
(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽?(已知:椭圆
+
=1的面积公式为S=
,柱体体积为底面积乘以高。)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定M、N的位置以及
的值,使总造价最少。
已知函数,其中
.
(Ⅰ) 求函数的极小值点;
(Ⅱ)若曲线在点
处的切线都与
轴垂直,问是否存在常数
,使函数
在区间
上存在零点?如果存在,求
的值:如果不存在,请说明理由.
平面内与两定点连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(I)求曲线的方程,并讨论
的形状与
值的关系.
(Ⅱ)当时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
城市的空气质量以其空气质量指数API(为整数)衡量,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.根据空气质量指数API的不同,可将空气质量分级如下表:
API |
0~50 |
51~100 |
101~150 |
151~200 |
201~250 |
251~300 |
>300 |
状况 |
优 |
良 |
轻微污染 |
轻度污染 |
中度污染 |
中度重污染 |
重度污染 |
为了了解某城市2011年的空气质量情况,现从该城市一年空气质量指数API的监测数据库中,用简单随机抽样方法抽取30个空气质量指数API进行分析,得到如下数据:
API分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
2 |
1 |
4 |
6 |
10 |
5 |
2 |
(Ⅰ)完成下面频率分布直方图,并求质量指数API的中位数大小;
(Ⅱ)估计该城市一年中空气质量为优良的概率;
(Ⅲ)请你依据所给数据和上述分级标准,对该城市的空气质量给出一个简短评价.
如图,四棱锥的底面为矩形,
是四棱锥的高,
与
所成角为
,
是
的中点,
是
上的动点.
(Ⅰ)证明:;
(Ⅱ)若,求直线
与平面
所成角的大小.
在中,
分别为内角
所对的边,且满足
.
(Ⅰ)求的大小;
(Ⅱ)现给出三个条件:①; ②
;③
.
试从中选出两个可以确定的条件,写出你的选择并以此为依据求
的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)