游客
题文

以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)点E、F、M分别是AC、CD、DB的中点,连接EF和FM.
①如图1,当点D、C分别在AO、BO的延长线上时,=_______;

②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明;

(2)如图3,若BO=,点N在线段OD上,且NO=3.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:

A :自带白开水; B :瓶装矿泉水; C :碳酸饮料; D :非碳酸饮料.

根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:

(1)这个班级有多少名同学?并补全条形统计图.

(2)若该班同学每人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?

饮品名称

自带白开水

瓶装矿泉水

碳酸饮料

非碳酸饮料

平均价格(元 / 瓶)

0

2

3

4

(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?

(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.

如图,码头 A B 分别在海岛 O 的北偏东 45 ° 和北偏东 60 ° 方向上,仓库 C 在海岛 O 的北偏东 75 ° 方向上,码头 A B 均在仓库 C 的正西方向,码头 B 和仓库 C 的距离 BC = 50 km ,若将一批物资从仓库 C 用汽车运送到 A B 两个码头中的一处,再用货船运送到海岛 O ,若汽车的行驶速度为 50 km / h ,货船航行的速度为 25 km / h ,问这批物资在哪个码头装船,最早运抵海岛 O ?(两个码头物资装船所用的时间相同,参考数据: 2 1 . 4 3 1 . 7 )

如图1,抛物线 y = 1 3 x 2 + bx + c 经过 A ( 2 3 0 ) B ( 0 , 2 ) 两点,点 C y 轴上, ΔABC 为等边三角形,点 D 从点 A 出发,沿 AB 方向以每秒2个单位长度的速度向终点 B 运动,设运动时间为 t ( t > 0 ) ,过点 D DE AC 于点 E ,以 DE 为边作矩形 DEGF ,使点 F x 轴上,点 G AC AC 的延长线上.

(1)求抛物线的解析式;

(2)将矩形 DEGF 沿 GF 所在直线翻折,得矩形 D ' E ' GF ,当点 D 的对称点 D ' 落在抛物线上时,求此时点 D ' 的坐标;

(3)如图2,在 x 轴上有一点 M ( 2 3 0 ) ,连接 BM CM ,在点 D 的运动过程中,设矩形 DEGF 与四边形 ABMC 重叠部分的面积为 S ,直接写出 S t 之间的函数关系式,并写出自变量 t 的取值范围.

如图1,在 Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 D E 分别在 AC BC 边上, DC = EC ,连接 DE AE BD ,点 M N P 分别是 AE BD AB 的中点,连接 PM PN MN

(1) BE MN 的数量关系是  

(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;

(3)若 CB = 6 CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B E D 三点在一条直线上时, MN 的长度为  

某超市销售樱桃,已知樱桃的进价为15元 / 千克,如果售价为20元 / 千克,那么每天可售出250千克,如果售价为25元 / 千克,那么每天可获利2000元,经调查发现:每天的销售量 y (千克)与售价 x (元 / 千克)之间存在一次函数关系.

(1)求 y x 之间的函数关系式;

(2)若樱桃的售价不得高于28元 / 千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号