已知圆,
(Ⅰ)若过定点()的直线
与圆
相切,求直线
的方程;
(Ⅱ)若过定点()且倾斜角为
的直线
与圆
相交于
两点,求线段
的中点
的坐标;
(Ⅲ) 问是否存在斜率为的直线
,使
被圆
截得的弦为
,且以
为直径的圆经过原点?若存在,请写出求直线
的方程;若不存在,请说明理由。
若各项都不相等的数列满足
,
(
且为常数),且数列
为等比数列.
(1)求的值;
(2)若数列,
为数列
的前
项和,证明:
如图所示,在三棱柱中,
底面
,点
在平面
中的投影为线段
上的点
.
(1)求证:⊥
(2)点为
上一点,若
,
,求三棱锥
的体积.
新华中学高三年级(1)班有甲,乙两个数学学习小组,每组抽选名同学参加学校数学测试,成绩(满分
分)的茎叶图如图所示,其中甲组的平均成绩是
,乙组成绩的中位数是
.
(1)求茎叶图中,
的值,且分别求出甲,乙两组学生成绩的方差
,并根据结果判断那个组的数学成绩更好;
(2)现要从测试成绩分及以上的学生随机抽取
名参加某次数学活动,求
名同学来自不同小组的概率.
已知函数为常数)
(1)求的周期与
;
(2)当时,求
的最值.
若函数在区间
上有且只有一个极值点,则
的取值范围为()
A.![]() |
B.![]() |
C.![]() |
D.![]() |