已知数列满足
,
,
,
是数列
的前
项和.
(1)若数列为等差数列.
①求数列的通项;
②若数列满足
,数列
满足
,试比较数列
前
项和
与
前
项和
的大小;
(2)若对任意,
恒成立,求实数
的取值范围.
(本小题满分l0分)选修4—5:不等式选讲
已知,不等式
的解集为M.
(1)求M;
(2)当时,证明:
.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线的极坐标方程是
,射线
与圆C的交点为O、P,与直线
的交点为Q,求线段PQ的长.
(本小题满分10分)选修4—1:几何证明选讲
如图所示, 为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
.
(1)求证
(2)求的值.
(本小题满分12分) 已知(
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
(本小题满分12分) 设椭圆的左、右焦点分别为F1、F2,A是椭圆C上的一点,
,坐标原点O到直线AF1的距离为
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线交
轴于点
,交
轴于点M,若
,求直线
的斜率.