( 7分)
已知= (cosx,sinx),
= (-cosx,cosx),函数f (x)=
.
(Ⅰ)求函数f (x)的最小正周期;
(Ⅱ)当x∈时,求f(x)的值域.
如图,在四棱锥中,底面ABCD是正方形,侧棱
底面ABCD,PD=DC,E是PC的中点,作
交
于点F。
证明:(Ⅰ)平面EDB;
(Ⅱ)平面EFD。
(本小题满分14分)一圆形纸片的半径为10cm,圆心为O,
F为圆内一定点,OF=6cm,M为圆周上任意一点,把圆纸片折叠,
使M与F重合,然后抹平纸片,这样就得到一条折痕CD,设CD
与OM交于P点,如图
(1)求点P的轨迹方程;
(2)求证:直线CD为点P轨迹的切线.
(本小题满分14分)
已知数列{an}的各项均为正数,观察程序框图,若时,
分别有
(1)试求数列{an}的通项;
(2)令的值.
.(本小题满分12分)已知点A、B的坐标分别是,
.直线
相交于点M,且它们的斜率之积为-2.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)若过点的直线
交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线
的方程.