已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
已知椭圆C:+
=1(a>b>0),直线y=x+
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同
两点A,B且线段AB的垂直平分线过定点C(
,0)求实数k的取值范围。
如图,在梯形
中,
,
,四边
形为矩形,平面
平面
,
.
(I)求证:平面
;
(II)点在线段
上运动,设
平面
与平面
所成二面角的平面角为
,试求
的取值范围.
已知数列满足:
,其中
为数列
的前
项和.
(1)试求数列的通项公式;
(2)设,数列
的前
项和为
,求证
△ABC的三个角A,B,C所对的边分别是a,b,c,向量=(2,-1),
=(sinBsinC,
+2cosBcosC),且
⊥
。⑴求角A的大小。⑵现给出以下三个条件:①B=45º;②2sinC-(
+1)sinB=0;③a=2。试从中再选择两个条件以确定△ABC,并求出所确定的△
ABC的面积。
.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足
=2时的概率。⑵
的数学期望。