若,其中
.
(1)当时,求函数
在区间
上的最大值;
(2)当时,若
,
恒成立,求
的取值范围.
(本小题满分10分)
已知椭圆的中心在原点,焦点在轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求的取值范围。
(本小题满分12分)设函数,
(
且
)。
(1)设,判断
的奇偶性并证明;
(2)若关于的方程
有两个不等实根,求实数
的范围;
(3)若且在
时,
恒成立,求实数
的范围。
(本题满分12分) 设是定义在
上的增函数,令
(1)求证时定值;
(2)判断在
上的单调性,并证明;
(3)若,求证
。
(本小题12分)已知函数的图象与
轴相交于点M
,
且该函数的最小正周期为.
(1)求和
的值;
(2)已知点,点
是该函数图象上一点,点
是
的中点,当
,
时,求
的值。
(本小题满分12分)已知为圆
上任一点,且点
.
(1)若在圆
上,求线段
的长及直线
的斜率;
(2)求的最大值和最小值;
(3)若,求
的最大值和最小值.