游客
题文

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在四棱锥中,的中点,的中点,

(1)求证:
(2)求证:
(3)求三棱锥的体积.

已知等差数列的前项和为.
(1)请写出数列的前项和公式,并推导其公式;
(2)若,数列的前项和为,求的和.

空气质量指数(单位:)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

日均浓度






空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染

某市日—日(天)对空气质量指数进行监测,获得数据后得到如下条形图.

(1)估计该城市一个月内空气质量类别为优的概率;
(2)从空气质量级别为三级和四级的数据中任取个,求恰好有一天空气质量类别为中度污染的概率.

设锐角三角形ABC的内角A,B,C的对边分别为,且.
(1)求角的大小;
(2)若,求的面积及.

已知函数
(1)当时,求函数的单调递增区间;
(2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号