已知向量,函数
(1)求函数图像的对称中心坐标;
(2)将函数的图像向下平移
,再向左平移
个单位得到函数
的图像,是写出
的解析式并作出它在
上的图像。
“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
![]() |
0.10 |
0.05 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
6.635 |
7.879 |
(参考公式:其中
)
(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
已知正项数列的前
项和为
,对任意
,有
.
(1)求数列的通项公式;
(2)令,设
的前
项和为
,求证:
(本小题满分12分)已知函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)若k为正常数,设,求函数
的最小值;
(Ⅲ)若,证明:
.
已知中心在坐标原点,焦点在轴上的椭圆过点
,且它的离心率
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)与圆相切的直线
交椭圆于
两点,若椭圆上一点
满足
,求实数
的取值范围.
(本小题满分12分)如图,是半圆
的直径,
是半圆
上除
、
外的一个动点,
垂直于半圆
所在的平面,
∥
,
,
,
.
(1)证明:平面平面
;
(2)当三棱锥体积最大时,求二面角
的余弦值.