如图,直三棱柱中,已知
,
,
是
中点.
(1)求证:平面
;
(2)当点在
上什么位置时,会使得
平面
?并证明你的结论.
(本小题12分)
如图,曲线是以原点
为中心,以
、
为焦点的椭圆的一部分,曲线
是以
为顶点,以
为焦点的抛物线的一部分,
是曲线
和
的交点,且
为钝角,若
,
.
(I)求曲线和
所在的椭圆和抛物线的方程;
(II)过作一条与轴不垂直的直线,分别与曲线
、
依次交于
、
、
、
四点(如图),若
为
的中点,
为
的中点,问
是否为定值?若是,求出定值;若不是,请说明理由.
(本小题14分)
设函数,其中
.
(I)当时,判断函数
在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数,不等式
都成立.
(本小题13分)
设等比数列的前项和为
,首项
,公比
.
(I)证明:;
(II)若数列满足
,
,求数列
的通项公式;
(III)记,
,数列
的前项和为
,求证:当
时,
.
(本小题12分)
为了拓展网络市场,腾讯公司为QQ用户推出了多款QQ应用,如“QQ农场”、“QQ音乐”、“QQ读书”等.市场调查表明,QQ用户在选择以上三种应用时,选择农场、音乐、读书的概率分别为,
,
.现有甲、乙、丙三位QQ用户独立任意选择以上三种应用中的一种进行添加.
(I)求三人所选择的应用互不相同的概率;
(II)记为三人中选择的应用是QQ农场与QQ音乐的人数,求
的分布列与数学期望.
(本小题12分)
如图,在三棱锥中,侧面
、
是全等的直角三角形,
是公共的斜边,且
,
,另一个侧面是正三角形.
(I)求证:;
(II)求二面角的余弦值;
(III)在直线是否存在一点
,使直线
与面
成
角?若存在,确定
的位置;若不存在,说明理由.