游客
题文

如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点
 
(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围;
(3)试用m表示△MPQ的面积S,并求面积S的最大值.

直三棱柱中,,点D在上.

(1)求证:
(2)若D是AB中点,求证:AC1∥平面B1CD;
(3)当时,求二面角的余弦值.

已知数列的前n项和为
(1)证明:数列是等差数列,并求
(2)设,求证:.

已知向量,函数.
(1)若,求的值;
(2)在锐角△ABC中,角A,B,C的对边分别是,且满足,求的取值范围.

已知数列{an}满足:(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号