中,A、B两点的坐标分别是(-2,0)(2,0),AC、AB、BC成等差数列。
(1)求顶点C的轨迹方程;
(2)直线y=x-2与C点轨迹交于MN两点,求线段MN长度。
已知函数在x=1处有极值10.
(1)求a、b的值;
(2)求的单调区间;
(3)求在[0,4]上的最大值与最小值。
设方程表示曲线C.
(1)m=5时,求曲线C的离心率和准线方程;
(2)若曲线C表示椭圆,求椭圆焦点在y轴上的概率。
双曲线的左、右焦点分别为
、
,
为坐标原点,点
在双曲线的右支上,点
在双曲线左准线上,
(Ⅰ)求双曲线的离心率;
(Ⅱ)若此双曲线过,求双曲线的方程;
(Ⅲ)在(Ⅱ)的条件下,、
分别是双曲线的虚轴端点(
在
轴正半轴上),过
的直线
交双曲线
、
,
,求直线
的方程
设,
是函数
的两个极值点,且
..
(Ⅰ)用表示
,并求
的最大值;
(Ⅱ)若函数,求证:当
且
时,