某中学高三文科班学生参加了数学与地理水平测试,学校从测试合格的学生中随机抽取100人的成绩进行统计分析.抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人.
(1)若在该样本中,数学成绩优秀率为30%,求a,b的值;
(2)若样本中
,求在地理成绩及格的学生中,数学成绩优秀的人数比及格的人数少的概率.
已知点
为
轴上的动点,点
为
轴上的动点,点
为定点,且满足
,
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)过点
且斜率为
的直线
与曲线
交于两点
,
,试判断在
轴上是否存在点
,使得
成立,请说明理由.
某售报亭每天以每份0.4元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.
(Ⅰ)若售报亭一天购进270份报纸,求当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式.
(Ⅱ)售报亭记录了100天报纸的日需求量(单位:份),整理得下表:
日需求量![]() |
240 |
250 |
260 |
270 |
280 |
290 |
300 |
| 频数 |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
以100天记录的需求量的频率作为各销售量发生的概率.
(1)若售报亭一天购进270份报纸,
表示当天的利润(单位:元),求
的数学期望;
(2)若售报亭计划每天应购进270份或280份报纸,你认为购进270份报纸好,还是购进280份报纸好? 说明理由.
如图,在四棱锥
中,
平面
,底面
是菱形,
,
.
(Ⅰ)求证:
;
(Ⅱ)若
,求二面角
的余弦值.
在
中,角
、
、
的对边分别为
、
、
,
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,
,求
的值.
(本小题满分15分)
已知函数
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.