已知椭圆的两个焦点分别为
,
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为
.
(1)求椭圆的方程;
(2)斜率为的直线
与曲线
交于
两个不同点,若直线
不过点
,设直线
的斜率分别为
,求
的数值;
(3)试问:是否存在一个定圆,与以动点
为圆心,以
为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求
的值.
如图,在多面体中,
平面
,
,且
是边长为
的等边三角形,
,
与平面
所成角的正弦值为
.
(Ⅰ)若是线段
的中点,证明:
面
;
(Ⅱ)求二面角的平面角的余弦值.
已知且
,函数
,
,记
(Ⅰ)求函数的定义域
及其零点;
(Ⅱ)若关于的方程
在区间
内仅有一解,求实数
的取值范围.
在中,
分别是角
的对边,
为
的面积,若
,且
.
(Ⅰ)求的值;
(Ⅱ)求的最大值.
若函数对定义域中任意
均满足
,则称函数
的图象关于点
对称.
(1)已知函数的图象关于点
对称,求实数m的值;
(2)已知函数在
上的图象关于点
对称,且当
时,
,求函数
在
上的解析式;
(3)在(1)(2)的条件下,当时,若对任意实数
,恒有
成立,求实数
的取值范围.