为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
如图,已知梯形ABCD中,CD=2,AC=,∠BAD=60°,
求(1)边AD的长度(2) 梯形的高.
设数列是等比数列,
,公比
是
的展开式中的第二项(按x的降幂排列).
(1)用表示通项
与前n项和
;
(2)若,用
表示
.
已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.
(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问多大时,AM⊥平面PDB可能成立?
已知圆锥曲线C:,点
分别为圆锥曲线C的左、右焦点,点B为圆锥曲线C的上顶点,求经过点
且垂直于直线
的直线
的方程.
一个的矩阵
有两个特征值:
,它们对应的一个特征向量分别为:
求矩阵M.