已知定义在实数集上的函数,
,其导函数记为
,
(1)设函数,求
的极大值与极小值;
(2)试求关于的方程
在区间
上的实数根的个数。
椭圆的离心率为
,两焦点分别为
,点
是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线
与圆O的位置关系.
如图,三棱锥中,
底面
于
,
,
,点
是
的中点.
(1)求证:侧面平面
;
(2)若异面直线与
所成的角为
,且
,
求二面角的大小.
某校为了解高二学生、
两个学科学习成绩的合格情况是否有关, 随机抽取了该年级一次期末考试
、
两个学科的合格人数与不合格人数,得到以下2
2列联表:
![]() |
![]() |
合计 |
|
![]() |
40 |
20 |
60 |
![]() |
20 |
30 |
50 |
合计 |
60 |
50 |
110 |
(1)据此表格资料,你认为有多大把握认为“学科合格”与“
学科合格”有关;
(2)从“学科合格”的学生中任意抽取2人,记被抽取的2名学生中“
学科合格”的人数为
,求
的数学期望.
附公式与表:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
函数(
)的部分图像如右所示.
(1)求函数的解析式;
(2)设,且
,求
的值.