在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. 求:(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若求的值.
(本小题满分16分)
已知数列,
,且满足
(
).
(1)若,求数列
的通项公式;
(2)若,且
.记
,求证:数列
为常数列;
(3)若,且
.若数列
中必有某数重复出现无数次,求首项
应满足的条件.
(本小题满分16分)
已知函数
(1) 若时,
恒成立,求
的取值范围;
(2) 若时,函数
在实数集
上有最小值,求实数
的取值范围.
(本小题满分16分)
如图,椭圆(a>b>0)的上、下两个顶点为A、B,直线l:
,点P是椭圆上异于点A、B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为
,BP所在的直线的斜率为
.若椭圆的离心率为
,且过点
.
(1)求的值;
(2)求MN的最小值;
(3)随着点P的变化,以MN为直径的圆是否恒过定点,
若过定点,求出该定点,如不过定点,请说明理由.
(本小题满分14分)
某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出元;③电力与机器保养等费用为
元.其中
是该厂生产这种产品的总件数。
(1)把每件产品的成本费(元)表示成产品件数
的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量不超过170件且能全部销售,根据市场调查,每件产品的销售价为
(元),且
,试问生产多少件产品,总利润最高?并求出最高总利润。(总利润=总销售额-总的成本)
(本小题满分14分)
如图,在四棱锥E—ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1) AE∥平面BDF;
(2) 平面BDF⊥平面BCE.