某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者从装有个红球、
个蓝球、6个白球的袋中任意摸出4个球.根据摸出
个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 |
摸出红、蓝球个数 |
获奖金额 |
一等奖 |
3红1蓝 |
200元 |
二等奖 |
3红1白 |
50元 |
三等奖 |
2红1蓝或2红2白 |
10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额的分布列与期望
.
(本小题满分14分)
已知椭圆与射线y=
(x
交于点A,过A作倾斜角互补的两条直线,
它们与椭圆的另一个交点分别为点B和点C.
(Ⅰ)求证:直线BC的斜率为定值,并求这个定值;
(Ⅱ)求三角形ABC的面积最大值.
(本小题满分14分)
已知函数.
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有
,求实数
的取值范围.
本小题满分14分)
如图,已知三棱锥P—ABC中,PA⊥平面ABC,设AB、PB、PC的中点分别为D、E、F,
若过D、E、F的平面与AC交于点G.
(Ⅰ)求证点G是线段AC的中点;
(Ⅱ)判断四边形DEFG的形状,并加以证明;
(Ⅲ)若PA=8,AB=8,BC=6,AC=10,求几何体BC-DEFG的体积.
(本小题满分12分)
某市场搞国庆促销活动,一个人同时转动如图2所示的两个转盘,记转盘(甲)得到的数
,转盘(乙)
得到的数为,设
为中一等奖、
为中二等奖.
(Ⅰ)求中一等奖的概率;(甲)图2(乙)
(Ⅱ)求中二等奖的概率.
(本小题满分12分)
已知函数的最大值为3,
的图像的相邻两对称轴间的距离为2,在y轴上的截距为2.
(Ⅰ)求函数的解析式;
(Ⅱ)若m=,求f(m)+f(m+1)的值.