已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形试求正实数a的取值范围.
如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的
倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PAC
D的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
已知向量函数
.
(1)求函数的最小正周期及单调递减区间;
(2)在锐角三角形ABC中,的对边分别是
,且满足
求
的取值范围.
设数列的各项都是正数,且对任意
,都有
,其中
为数列
的前
项和。
(1)求证数列是等差数列;
(2)若数列的前
项和为Tn,求Tn。
在中,边
、
、
分别是角
、
、
的对边,且满足
(1)求;
(2)若,
,求边
,
的值.
已知偶函数满足:当
时,
,当
时,
.
(Ⅰ)求表达式;
(Ⅱ)若直线与函数
的图像恰有两个公共点,求实数
的取值范围;
(Ⅲ)试讨论当实数满足什么条件时,直线
的图像恰有
个公共点
,且这
个公共点均匀分布在直线
上.(不要求过程)