已知空间直角坐标系O﹣xyz中的点A(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点.
(1)求点P的坐标满足的条件;
(2)求平面α与坐标平面围成的几何体的体积.
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
设函数
(
为常数,
是自然对数的底数).
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)若函数
在
内存在两个极值点,求
的取值范围.
已知等差数列
的公差为2,前
项和为
,且
成等比数列.
(Ⅰ)求数列
的通项公式;
(Ⅱ)令
,求数列
的前
项和
.
乒乓球台面被球网分成甲、乙两部分,如图,甲上有两个不相交的区域
,乙被划分为两个不相交的区域
.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在
上记3分,在
上记1分,其它情况记0分.对落点在
上的来球,队员小明回球的落点在
上的概率为
,在
上的概率为
;对落点在
上的来球,小明回球的落点在
上的概率为
,在
上的概率为
.假设共有两次来球且落在
上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和
的分布列与数学期望.
如图,在四棱柱
中,底面
是等腰梯形,
是线段
的中点.
(Ⅰ)求证:
;
(Ⅱ)若
垂直于平面
且
,求平面
和平面
所成的角(锐角)的余弦值.