已知函数.
(1)求的最小正周期及单调递减区间;
(2)若在区间
上的最大值与最小值的和为
,求
的值.
m取何实数时,复数.
(1)是实数?
(2)是虚数?
(3)是纯虚数?
记函数的定义域为集合
,函数
的定义域为集合
.
(1)求;
(2)若,且
,求实数
的取值范围.
已知函数在点
处的切线方程为
.
(1)求,
的值;
(2)对函数定义域内的任一个实数
,
恒成立,求实数
的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
其中
为常数.己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.