已知函数的图象在
处的切线方程为
,其中有e为自然对数的底数。
(1)求的值;
(2)当时,证明
;
(3)对于定义域为D的函数若存在区间
时,使得
时,
的值域是
。则称
是该函数
的“保值区间”。设
+
,问函数
是否存在“保值区间”?若存在,求出一个“保值区间”,若不存在,说明理由。
如图,在三棱台A1B1C1-ABC中,已知A1A⊥底面ABC,A1A= A1B1= B1C1=a,B1B⊥BC,且B1B和底面ABC所成的角45º,求这个棱台的体积.
设{an}是等差数列,bn=.已知b1+b2+b3=
, b1b2b3=
.求等差数列的通项an.
双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P、Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.
已知n为自然数,实数a>1,解关于x的不等式
logax-logx+12log
x+…+n (n-2)
log
x>
log
(x2-a)
根据函数单调性的定义,证明函数f (x)=-x3+1在(-∞,+∞)上是减函数.