(本小题满分12分)已知函数(
).
(Ⅰ)若函数在定义域内单调递增,求实数
的取值范围;
(Ⅱ)若,且关于
的方程
在
上恰有两个不等的实根,求实数
的取值范围.
(本小题满分12分)
已知等差数列满足:
,
.
的前n项和为
.
(1)求及
;
(2)若,
(
),求数列
的前
项和
.
(本小题满分12分)
向量
(1)若a为任意实数,求g(x)的最小正周期;
(2)若g(x)在[o,)上的最大值与最小值之和为7,求a的值,
(本小题满分12分)
某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率;
(2)如果用分层抽样的方法从“优秀”和“良好” 的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
(本小题满分14分)
已知函数是奇函数.
(1)求实数的值;
(2)判断函数在
上的单调性,并给出证明;
(3)当时,函数
的值域是
,求实数
与
的值。
(本小题满分14分)
已知是定义在R上的奇函数,且
,求:
(1)的解析式。
(2)已知,求函数
在区间
上的最小值。