(本小题满分14分)设二次函数满足下列条件:
①当时,其最小值为0,且
成立;
②当时,
恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的实数,使得存在
,只要当
时,就有
成立
如图,已知椭圆
的中心在原点
,长轴左、右端点
在
轴上,椭圆
的短轴为
,且
的离心率都为
,直线
,
交于两点,与
交于两点,这四点按纵坐标从大到小依次为
.
(1)设
,求
与
的比值;
(2)当
变化时,是否存在直线
,使得
,并说明理由.
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成
小块地,在总共
小块地中,随机选
小块地种植品种甲,另外
小块地种植品种乙.
(I)假设
,在第一大块地中,种植品种甲的小块地的数目记为
,求
的分布列和数学期望;
(II)试验时每大块地分成8小块,即
,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:
)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据
的样本方差
,其中
为样本平均数.
如图,四边形
为正方形,
平面
,
,
.
(I)证明:平面 平面
(II)求二面角 的余弦值.
已知等差数列 满足 , .
(I)求数列
的通项公式;
(II)求数列
的前
项和.
已知平面内一动点
到点
(1,0)的距离与点
到
轴的距离的等等于1.
(1)求动点
的轨迹的方程;
(2)过点
作两条斜率存在且互相垂直的直线
,设
与轨迹
相交于点
,
与轨迹
相交于点
,求
的最小值.