(本小题满分13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.
如图,是抛物线上上的一点,动弦分别交轴于两点,且. (1)若为定点,证明:直线的斜率为定值; (2)若为动点,且,求的重心的轨迹方程.
设过点,倾斜角为的直线与抛物线相交于两点,抛物线的顶点在原点,以轴为对称轴,若成等比数列,求抛物线的方程.
若,求实数的值.
已知抛物线,过点作一直线交抛物线于两点,试求弦中点的轨迹方程.
已知,,三点都是平面与平面的公共点,并且和是两个不同的平面,试判断,,三点的位置关系.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号