(本小题满分13分)已知椭圆C:的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线
相切
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若直线L:与椭圆C相交于A、B两点,且
,求证:
的面积为定值
(本题14分)已知函数f (x) = ax3 +x2 -ax,其中a,x∈R.
(Ⅰ)若函数f (x)在区间(1,2)上不是单调函数,试求a的取值范围;
(Ⅱ)直接写出(不需给出运算过程)函数的单调递减区间;
(Ⅲ)如果存在a∈(-∞,-1],使得函数, x∈[-1, b](b > -1),在x = -1处取得最小值,试求b的最大值.
(本题12分)已知函数对任意实数p、q都满足
.
(Ⅰ)当时,求
的表达式;
(Ⅱ)设求
;
(Ⅲ)设求证:
.
(本题12分)某人抛掷一枚硬币,出现正反的概率都是,构造数列
,使
得,记
.
(Ⅰ)求的概率;
(Ⅱ)若前两次均出现正面,求的概率.
(本题12分)已知数列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),
数列{bn}满足bn=an+1-2an.
(Ⅰ)求证:数列{-
}是等比数列;
(Ⅱ)求数列{}的通项公式;
(Ⅲ)求.
(本题10分)已知函数是奇
函数,当x>0时,有最小值2,且f (1)
.
(Ⅰ)试求函数的解析式;
(Ⅱ)函数图象上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,说明理由.