设椭圆的左、右焦点分别为
,
,上顶点为
,过
与
垂直的直线交
轴负半轴于
点,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过、
、
三点的圆恰好与直线
相切,求椭圆
的方程;
(Ⅲ)过的直线
与(Ⅱ)中椭圆交于不同的两点
、
,则
的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
已知实数,函数
.
(1)当时,求
的最小值;
(2)当时,判断
的单调性,并说明理由;
(3)求实数的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明, 声音强度(分贝)由公式
(
为非零常数)给出,其中
为声音能量.
(1)当声音强度满足
时,求对应的声音能量
满足的等量关系式;
(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为
时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.
如图,四棱锥的底面是正方形,
⊥平面
,
(1)求证:;
(2)求二面角的大小.
已知a∈R,设关于x的不等式|2x﹣a|+|x+3|≥2x+4的解集为A.
(1)若a=1,求A;
(2)若A=R,求a的取值范围.
已知曲线C1:,(α为参数),C2:
,(θ为参数)
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为α=,Q为C2上的动点,求PQ中点M到直线C3:
,(t为参数)距离的最小值及此时Q点坐标.