若数列的各项均为正数,,为常数,且.(1)求的值;(2)证明:数列为等差数列;(3)若,对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差数列?若存在,用k分别表示一组p和r;若不存在,请说明理由.
已知函数, (I)求函数的递增区间; (II)求函数在区间上的值域。
已知, (I)判断的奇偶性; (II)时,判断在上的单调性并给出证明。
(本题满分12分)已知, 是平面上的一组基底,若+λ,, (I)若与共线,求的值; (II)若、是夹角为的单位向量,当时,求的最大值。
已知向量,, (I)若∥,求的值; (II)若,求的值。
已知函数(其中0≤≤)的图象与y轴交于点, (I)求的解析式; (II)如图,设P是图象上的最高点,M、N是图象与x轴的交点,求与的夹角的余弦值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号