(本小题满分12分)已知点
是抛物线
的焦点.
(1)求抛物线方程;
(2)若点
为圆
上一动点,直线
是圆在点
处的切线,直线
与抛物线相交于
两点(
在
轴的两侧),求平面图形
面积的最小值.
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=
,E、F分别为线段PD和BC的中点.
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于
为正品,小于
为次品.现随机抽取这两种元件各
件进行检测,检测结果统计如下:
| 测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
| 元件A |
![]() |
![]() |
![]() |
![]() |
![]() |
| 元件B |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记
为生产1件元件A和1件元件B所得的总利润,求随机变量
的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.
在公比为
的等比数列
中,
与
的等差中项是
.
(Ⅰ)求
的值;
(Ⅱ)若函数
,
,的一部分图像如图所示,
,
为图像上的两点,设
,其中
与坐标原点
重合,
,求
的值.
已知数列
,
满足:
.
(1)若
,求数列
的通项公式;
(2)若
,且
.
① 记
,求证:数列
为等差数列;
② 若数列
中任意一项的值均未在该数列中重复出现无数次,求首项
应满足的条件.
已知椭圆
过点
,椭圆
左右焦点分别为
,上顶点为
,
为等边三角形.定义椭圆C上的点
的“伴随点”为
.
(1)求椭圆C的方程;
(2)求
的最大值;
(3)直线l交椭圆C于A、B两点,若点A、B的“伴随点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.